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FOREWORD

In this report, the effect of laminate stacking sequence on the tensile strength
of notched and unnotched graphite/epoxy laminates is investigated.

The work reported here was performed in the Mechanics and Surface Inter-
actions Branch, Nonmetallic Materials Division, Air Force Materials
Laboratory, Wright-Patterson Air Force Base, Ohio. James M. Whitney,
AFML/MBM, was the principal investigator. The authors wish to acknow-
ledge J. Camping, R. Esterline, T. Richardson and C. Lovett of the
University of Dayton Research Institute for the fabrication, preparation

and testing of composite experimental specimens. This report was released
by the authors, J. M. Whitney and R. Y. Kim in August 1976, and covers
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SECTION I

INTRODUC TION

Delamination along straight free-edges of composite laminates in the
presence of an in-plane uniaxial load has been previcusly observed, for
example, see References 1 and 2 . Such a phenomenon is associated with
interlaminar tensile stresses generated along straight free-edges. The
nature and determination of interlaminar stresses at free-edges has
received detailed discussion in previous publications (3, 4, 5, 6]. The
laminate stacking sequence will determine whether an interlaminar normal
stress will produce tension or compression at the straight free-edge of a
tensile coupon. Thus, it is possible that the in-plane tensile strength of
laminated composites could be influenced by ply stacking sequence. Since
notches present free-edges of a different nature than those of a straight

edge in an unnotched tensile coupon, they are also of interest.

In the present paper, the effect of stacking sequence on the notched
and unnotched tensile strength of quasi-isotropic graphite/epoxy laminates
is investigated experimentally. Notches consist of circular holes and
center cracks. Results are presented for two stacking sequences, one
which produces large interlaminar tensile stresses along straight free-
edges of a coupon and a second which produces interlaminar compression

along the same free-edges.
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SECTION II

EXPERIMENTAL PROGRAM

The material system chosen for this investigation is Fiberite's T300/
934 graphite/epoxy system referred to by Fiberite as the 1034 pre-preg
system. Two quasi-isotropic laminate stacking sequences were used, (%45,
0, 90)s and (90, O, i45)s. The laminate with the +45-degree plies on the
outside produce interlaminar tension at the straight edge of a tensile coupon
as illustrated in Figure 1. In particular, the free-body diagram indicates
clockwise bending moments produced by the interlaminar normal stress g
at the free-edge, which produces a tensile stress. The largest value of
o, occurs along the laminate centerline. The calculations used to establish
Figure 1 are based on the following assumptions: (1) plane stress laminated
plate theory [7,8,9] is recovered at the central plane of the laminate y=0,
proevided the width, W, is considerably larger than the thickness, h(W/h>>2);
(2) the force and moment resultants which are statically equivalent to the
interlaminar stresses along planes z = constant can be determined from
simple equilibrium of forces and moments; (3) the interlaminar stresses are
confined to a boundary region adjacent to the free-edges y =+ W/2 which is
approximately equal to the laminate thickness. This procedure was first
proposed by Pagano and Pipes [4]. The following ply elastic properties were

used to obtain the results in Figure 1:

EL = 21x106psi, B l.6x106psi

T
(1)
6
= i v = .
GLT 0.7x10 psi, LT 0.3

where L is the fiber direction, T the transverse direction, and VLT is the
Poisson ratio determined by measuring the transverse strain in a uniaxial

tensile test parallel to the fibers.

Using the moments produced by v, as shown in Figure 1, the distri-

bution of ¢ across the width of the laminate on any plane z=constant can be

oo
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estimated from the procedure developed by Pagano and Pipes [2]. Results
of this estimate are shown in Figure 2 at z = 0, Now noting that the stresses
in the tensile coupon are independent of x, the distribution of & through the

laminate thickness can be determined from the equilibrium equation of elasti-
city theory

r +o =0 (2)

From the free-body diagram in Figure 1 it can be seen that ryz is linear
within the ith ply, that is

i i i

ryz = ao + z al (y) (133

i i
where a:) is a constant determined from continuity of ryz at ply interfaces

and a, is a function of y only. Substituting Eq. (3) into Eq. (2) yields

Z

: L. e ;
i i i
e / (ao + z al) dz (4)

-h/2

Since the integration is performed continuously from the bottom of the
laminate, continuity of cz is assured at the layer interfaces. The distribu-
tion of o through the laminate thickness is shown in Figure 3 for both lamin-
ate stacking sequences. Results for the (90, 0, * 45)s laminate was obtained
by following the same procedure as in Figures 1 and 2 in conjunction with

Eq. 4.

It should be noted that the interlaminar stress distributions around
holes and cracks are very complex with the interlaminar normal stress at
each interface oscillating from tension to compression along the free-edges
[10]. Thus, the effect of delamination around notches may be less severe

than along the straight edges of a notched or unnotched coupon when 1

produces tension along the entire free-edge.

The experimentally determined elastic properties of the two stacking

sequences are shown in Table 1. As anticipated, the elastic constants are i

| T— d




relatively independent of stacking sequence effects. Dimensions of the test
specimens are displayed in Figure 4. The effect of notch shape and size in
conjunction with stacking sequence are examined by considering both circular
holes and sharp-tipped center cracks of sizes 0.1, 0.3, and 0.6 in. (hole

diameter or crack length).

A total of 296 test specimens were run, as shown in Table 2. Each
data point is represented by a minimum of 15 replicate tests (see Table 2).
This number of replicates is considered to be an absolute minimum number
necessary for determining a statistical distribution of notched and unnotched

strengths.

All specimens were cut from flat plates laid up and cured in an auto-
clave using the pre-preg supplier's recommended cure cycle. None of the
panels received post-cure. Fiber volume fractions were determined to be
approximately 65 percent. Unnotched specimens and notched specimens
were cut from various panels in a rather random fashion. Thus, each data

int is represented by replicates taken from a number of different panels.

Each notched specimen was a straight-sided tension specimen (see
Figure 4) with either a centrally located drilled hole of the proper size or a
central crack formed by drilling a 0.01 in-diameter pilot hole and then using
a 0.005 in.-diameter diamond wire to complete the crack. No attempt was
made to make specimens with identical discontinuity length-to-width ratios
(i.e. 2R/W or 2C/W). In particular, although the gage length was constant,
2R/W or 2C/W was nominally 0.1, 0.2, and 0.3 for 0.1, 0.3, and 0.6 in.

notch sizes, respectively.

All specimens were ramp loaded to failure at a rate of 20 1b/sec. in a

closed-loop MTS machine. Acoustic emission was recorded for most specimens.




SECTION III

DATA REDUCTION

The failure stress, o’o, of unnotched tensile coupons was cal_ulated
from the failure load. In a similar manner, the failure stress of notched

coupons, o, was determined from their failure load. The notched values

were adjusted by multiplying N by isotropic finite width correction factors,
as described in Reference 11, to obtain the notched, infinite width failure

stress. Each set of data was fit to the Weibull distribution
A
P(0'0>0’) = exp | -(o/0) (4)

where ¢ is the location parameter of the distribution, often referred to as the
characteristic strength, and a is the shape parameter. Equation (4) was

used in the following linearized form for purposes of fitting the data.
%[m(—ln p)] +n % = Ino (5)

Average values, coefficient of variation, n, shape parameter, characteristic
strength, and goodness of fit parameter, r, are shown in Table 3 for each
data set. The parameter r, is a measure of how well the data fits Equation
5. For a perfect fit r = 1. A pooled value of the shape parameter, up, is
also shown in Table 3 for each stacking sequence. This number was obtained
’ by normalizing each data set with respect to its characteristic strength and
pooling the resulting data to obtain a single value of the shape parameter.
This procedure is based on the assumption that the shape parameter for
notched and unnotched laminates of like material and ply orientations are the
same, as discussed in References 11 and 12. The validity of this pooling
procedure has been discussed by Lemon [1 3] . Thus, o is based on 147
specimens for the (%45,0, 90)s laminate and on 149 specimens for the (90,0,

+45) s laminates.

Notched data was also compared to the point stress criterion and
average stress criterion, which were previously developed in Reference 14

for predicting the strength of laminates under uniaxial load containing either

a circular hole or center crack. Both criteria involve two parameters, |

unnotched tensile strength and a characteristic dimension adjacent to the
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discontinuity, d0 for the point stress criterion and ao for the average stress

criterion. For a circular hole of radius R in a quasi-isotropic laminate

N 2
o 2 4 (6)
o 2+g1 +3§l

o 2(1-¢.)
L Z (7
o 2 4

i e 0 6o

R
%1 = Rw (8)
o
and
R
Es 1= (9)
o

For a center crack of length 2c in an isotropic or orthotropic laminate,

g

R 2
e lfl ~Es (10)
(g 1-¢
e S \/—-—4 (11)
o 1 +§4

for the average stress criterion where

(@]
€’3 - CHd \RE|
o
and
G
§4 3 C+ao A1s)

Results are shown in Figures 5 and 6 for the circular hole and center crack,

Values of do = 0.04 in, and ao = 0.15 in. were chosen, as these numbers had




been previously shown to give reasonable results for a variety of notched
laminates [1 l] . Thus, no attempt was made to obtain a '"best fit value"

for do and a . Experimental data shown in Figures 5 and 6 are based on

characteristic strengths shown in Table 3.




SECTION IV

DISCUSSION AND CONCLUSIONS

A cursory examination of Table 3 reveals that the unnotched tensile
strength was effected by stacking sequence, while the notched strength shows
very little sensitivity to stacking sequence. The reduction in unnotched
tensile strength of the (%45, 0, 90)S laminates is attributed to gross delamina-
tion which occurred between U5 and 50 ksi axial tensile stress. In addition
to being visible physically, delamination could be determined from the
response of both longitudinal and transverse strain gages as shown in Figure
7. A sharp increase in total acoustic emission counts was also observed at
the onset of delamination. The acoustic emission count as a function of axial
strain is also illustrated in Figure 7 for a (45, 0, 90)s laminate. Linear
elastic response to failure for both longitudinal and transverse strain is
observed for (90, O, :1:45)S laminates, as seen in Figure 7. It should be noted
from Figure 3 that the interlaminar normal stress, L at the free-edge is
tension throughout the laminate thickness for the (%45, 0, 90)S stacking

sequence, and in compression throughout the laminate thickness for the

(90, O, :t45)s stacking sequence. The stress distributions in Figure 3 indicate
that an axial tensile stress of 45-50 ksi corresponds to an estimated maximum

value of o, of 17.4 -19.4 ksi.

In most cases for the notched specimens, tensile failure took place
prior to delamination at the straight free-edge, preventing this failure mode
from having any significant influence on notched strength. Since stacking
sequence had little effect on notched strength, it is concluded that any delam-

ination occurring along the free-~boundary of the discontinuity either had little

influence on ultimate strength or had the same effect on both stacking sequences.
As pointed out earlier, interlaminar stress distributions on the boundary of |
through-the-thickness discontinuities are usually complex, yielding normal

stresses which can oscillate from tension to compression along the free-edge.




As a point of academic interest, the ply properties of Eq. 1 in conjunc-

=8.10 x 106 psiand v __ = 0.317.

tion with lamination theory [7, 8, 9] yield E 12

This compares favorably with the measuredl 1properties of Table 1.

Typical data points fit to Eq, 5 are illustrated in Figure 8. A com-
parison of Weibull distributions for unnotched data and notched data for
(:t45,0,90)S laminates is shown in Figures 9 and 10, and for (90,0,:&45)s
laminates in Figures 11 and 12. It can be seen that the distributions for
different sized circular holes and center cracks look very similar, while the
unnotched distribution is broader with a longer tail, reflecting the lower
value of a and correspondingly higher coefficient of variation. This data
indicates that notched and unnotched tensile strength for the same laminate
do not necessarily yield similar Weibull distributions. It has been previously
postulated [[1, 12, 15] that similar distributions should b2 obtained for

notched and unnotched specimens of the same laminate.

Comparison between experiment and theory in Figures 5 and 6 show

reasonably good agreement for both stacking sequences. It is possible

that better agreement could be obtained from other choices of a and do.




5‘

Jo0.

12.

13.

1.

15.

REFERENCES

J. M, Whitney and C. E. Browning, Journal of Composite Materials, Vol. 6,
1972, pp. 300-303.

N. J. Pagano and R. B. Pipes, International Journal of Mechanical Sciences,
Vol. 15, 1973, pp. 679-688.

R. B. Pipes and N, J. Pagano, Journal of Compesite Materials, Vol. L, 1970,
pp. 533-518.

M. J. Pagano and R. B. Pipes, Journal of Composite Materials, Vol. 5, 1971,
pp' 50-5’7 .

E. F. Rybicki, Journal of Composite Materials, Vol. 5, 1971, pp. 35L4-360.
N. J. Pagano, Journal of Composite Materials, Vol. 8, 197L, pp. 65-82.

Y. Stavsky, "Proceedings of the American Society of Civil Engineers",
Journal of the Engineering Mechanics Division, Vol. 81, 1962, pp. 31-55.

J. E. Ashton and J. M. Whitney, Theory of Laminated Plates, Technomic
Publishing Company, Stamford, Connecticut, 1970.

N. J. Pagano, Mechanics of Composite Materials, Editied by G. P. Sendeckyj,
Volume 2 of Composite Materials Series, Edited by L. J. Broutman and R. H.
Krock, Academic Press, New York, 197L, pp. 23-L5.

E. F, Rybicki and A. T. Hopper, Analytical Investigation of Stress Con-
centrations Due to Holes in Fiber Reinforced Plastic Laminated Plates,
3-Dimensional Models, Air Force Technical Report AMML-TR-73-100, Air Force
Materials Laboratory, June 1973.

R. J. Muismer and J. M. Whitney, Fracture Mechanics of Composites, ASTM
STP 593, American Society for Testing and Matsrials, 1975, pp. 117-1L2.

M. E. Waddoups and J. C. Halpin, Computers and Structures, Vol. L, 197L,
pp . l-lh .

R. V. Wolff and G. H. Lemon, Reliability Prediction for Composite Joints--
Bonded and Bolted,Air Force Technical Report AFIL-TR-7L4-197, March 1976.

J. M. Whitney and R. J. Nuismer, Journal of Composite Materials, Vol. 8,
pp. 253-265.

J. M. Whitney, "Proceedings 12th Annual Meeting Society of Engineering
Science", The University of Texas at Austin, 1975, pp. 173-182.




ik

i TABLE 1, ELASTIC PROPERTIES T300/934

ORIENTATION E1 1( PSI) Yo
| 6
(45, 0, 90)s % 7,68 x 10 * 0.30
6
(90, o0, *45)5 *% 7.94 x 10 %% 0,29

S
X

*% Based on an average of eight specimens

Based on an average of nine specimens




TABLE 2,

TEST PROGRAM

TYPE NOTCH SIZE
0 (0}, T 0.3" 0.6"
Unnotched - 13 31 o Sas e
Hole - 1 -——- 23 21 20
Crack - 1 --- 18 19 15
Unnotched - 2% 32 ey T Lk
Hole - 2 -——- 23 20 21
Crack - 2 --- 19 18 16

% 1 - Refers to (£45.0,90)S

*% 2 - Refers to (90) 0!i45)s

12
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0.030ll o h°

Figure 1. Free-body diagram for determining interlaminar
stress transfer mechanisms.

14




*(0 = z) suerd-prw
2jeUlWIE] JB SS9JI)S [RULIOU IeUlWE]IVIUL JO UoIINqlilsip ajewixorddy °z 2anfig

£ £
.—— ] —_—
f e &

\ ™ ¢42200-

o
=X
410
15
N\3+>n.> A
d¢0
S(06'0 'St F)

$£6/00€ 1 L TEe e




‘uodnoo a(isuaj e Jo (/M F = £) S§98po-99J] 9} Je SSOUWD1Y}
2jeutwie] YB8noJyj) ss9138 [RUIIOU IeUlUR]IDIUL JO UOIINQIIIsid °¢ 2and1 g

GO-

|'O=

16

S(Sb H,0.0mvl/

v€6/00¢1

G0
k.S
z




!
wB N2 | w

6 5 2 enp | !
= l%? TAB Y

¥ 1 G
(b) CRACK
2R e " i "
5c = O, 03, 08
W=, 1wz, 2
L - 9Il

Figure 4. Geometry of circular hole and center cracked tensile specimens.
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